If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2+8x=27
We move all terms to the left:
7x^2+8x-(27)=0
a = 7; b = 8; c = -27;
Δ = b2-4ac
Δ = 82-4·7·(-27)
Δ = 820
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{820}=\sqrt{4*205}=\sqrt{4}*\sqrt{205}=2\sqrt{205}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-2\sqrt{205}}{2*7}=\frac{-8-2\sqrt{205}}{14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+2\sqrt{205}}{2*7}=\frac{-8+2\sqrt{205}}{14} $
| 2x-5+6=11 | | 70=7j | | 0.1(z-4.2)=0.48 | | (2n-2)^2=4 | | x+89=871 | | 6x-21=9+x | | 3y+(y-2)=60 | | (3x+22)+(2x-12)=180 | | 12u-11u+3u-3u=15 | | n+(n-72)=90 | | 24-3x=4x-13 | | Y=0.18x+23 | | 38/1=c/77 | | q+4q-3q+2q-3q=8 | | 9015=0.06x | | w-7=21 | | 2x+50=138 | | -14x+49=-4x-26 | | -0.2k-6.4=k+10.16 | | 3x-20=-x+24 | | y=0.97*6+1.29 | | 66=b+23 | | 123+x=148 | | 1+3x-5=2 | | 5x+3+77=90 | | 1.9d-16.07=3d+3.73 | | 20x+4(7x+5)=3(x-10)-40. | | 19x+31=11x+1 | | 90+x=121 | | 5x+3+77=180 | | 7x-3=3x-17 | | 19x+31=11x=1 |